Extensions 1→N→G→Q→1 with N=C3xD12 and Q=C22

Direct product G=NxQ with N=C3xD12 and Q=C22
dρLabelID
C2xC6xD1296C2xC6xD12288,990

Semidirect products G=N:Q with N=C3xD12 and Q=C22
extensionφ:Q→Out NdρLabelID
(C3xD12):1C22 = S3xD24φ: C22/C1C22 ⊆ Out C3xD12484+(C3xD12):1C2^2288,441
(C3xD12):2C22 = D24:S3φ: C22/C1C22 ⊆ Out C3xD12484(C3xD12):2C2^2288,443
(C3xD12):3C22 = C24:4D6φ: C22/C1C22 ⊆ Out C3xD12484(C3xD12):3C2^2288,445
(C3xD12):4C22 = C24:6D6φ: C22/C1C22 ⊆ Out C3xD12484(C3xD12):4C2^2288,446
(C3xD12):5C22 = S3xD4:S3φ: C22/C1C22 ⊆ Out C3xD12488+(C3xD12):5C2^2288,572
(C3xD12):6C22 = D12:D6φ: C22/C1C22 ⊆ Out C3xD12248+(C3xD12):6C2^2288,574
(C3xD12):7C22 = D12:9D6φ: C22/C1C22 ⊆ Out C3xD12488-(C3xD12):7C2^2288,580
(C3xD12):8C22 = D12:5D6φ: C22/C1C22 ⊆ Out C3xD12248+(C3xD12):8C2^2288,585
(C3xD12):9C22 = D12:6D6φ: C22/C1C22 ⊆ Out C3xD12488+(C3xD12):9C2^2288,587
(C3xD12):10C22 = C3xS3xD8φ: C22/C1C22 ⊆ Out C3xD12484(C3xD12):10C2^2288,681
(C3xD12):11C22 = C3xQ8:3D6φ: C22/C1C22 ⊆ Out C3xD12484(C3xD12):11C2^2288,685
(C3xD12):12C22 = S32xD4φ: C22/C1C22 ⊆ Out C3xD12248+(C3xD12):12C2^2288,958
(C3xD12):13C22 = S3xD4:2S3φ: C22/C1C22 ⊆ Out C3xD12488-(C3xD12):13C2^2288,959
(C3xD12):14C22 = D12:12D6φ: C22/C1C22 ⊆ Out C3xD12488-(C3xD12):14C2^2288,961
(C3xD12):15C22 = D12:13D6φ: C22/C1C22 ⊆ Out C3xD12248+(C3xD12):15C2^2288,962
(C3xD12):16C22 = S3xQ8:3S3φ: C22/C1C22 ⊆ Out C3xD12488+(C3xD12):16C2^2288,966
(C3xD12):17C22 = D12:15D6φ: C22/C1C22 ⊆ Out C3xD12488-(C3xD12):17C2^2288,967
(C3xD12):18C22 = D12:16D6φ: C22/C1C22 ⊆ Out C3xD12488+(C3xD12):18C2^2288,968
(C3xD12):19C22 = C2xC32:2D8φ: C22/C2C2 ⊆ Out C3xD1296(C3xD12):19C2^2288,469
(C3xD12):20C22 = D12:20D6φ: C22/C2C2 ⊆ Out C3xD12484(C3xD12):20C2^2288,471
(C3xD12):21C22 = C2xC3:D24φ: C22/C2C2 ⊆ Out C3xD1248(C3xD12):21C2^2288,472
(C3xD12):22C22 = D12:18D6φ: C22/C2C2 ⊆ Out C3xD12244+(C3xD12):22C2^2288,473
(C3xD12):23C22 = C6xD4:S3φ: C22/C2C2 ⊆ Out C3xD1248(C3xD12):23C2^2288,702
(C3xD12):24C22 = C3xD12:6C22φ: C22/C2C2 ⊆ Out C3xD12244(C3xD12):24C2^2288,703
(C3xD12):25C22 = C2xD12:5S3φ: C22/C2C2 ⊆ Out C3xD1296(C3xD12):25C2^2288,943
(C3xD12):26C22 = C2xD12:S3φ: C22/C2C2 ⊆ Out C3xD1248(C3xD12):26C2^2288,944
(C3xD12):27C22 = C2xS3xD12φ: C22/C2C2 ⊆ Out C3xD1248(C3xD12):27C2^2288,951
(C3xD12):28C22 = C2xD6:D6φ: C22/C2C2 ⊆ Out C3xD1248(C3xD12):28C2^2288,952
(C3xD12):29C22 = S3xC4oD12φ: C22/C2C2 ⊆ Out C3xD12484(C3xD12):29C2^2288,953
(C3xD12):30C22 = D12:23D6φ: C22/C2C2 ⊆ Out C3xD12244(C3xD12):30C2^2288,954
(C3xD12):31C22 = D12:24D6φ: C22/C2C2 ⊆ Out C3xD12484(C3xD12):31C2^2288,955
(C3xD12):32C22 = D12:27D6φ: C22/C2C2 ⊆ Out C3xD12244+(C3xD12):32C2^2288,956
(C3xD12):33C22 = S3xC6xD4φ: C22/C2C2 ⊆ Out C3xD1248(C3xD12):33C2^2288,992
(C3xD12):34C22 = C3xD4:6D6φ: C22/C2C2 ⊆ Out C3xD12244(C3xD12):34C2^2288,994
(C3xD12):35C22 = C6xQ8:3S3φ: C22/C2C2 ⊆ Out C3xD1296(C3xD12):35C2^2288,996
(C3xD12):36C22 = C3xS3xC4oD4φ: C22/C2C2 ⊆ Out C3xD12484(C3xD12):36C2^2288,998
(C3xD12):37C22 = C3xD4oD12φ: C22/C2C2 ⊆ Out C3xD12484(C3xD12):37C2^2288,999
(C3xD12):38C22 = C6xD24φ: C22/C2C2 ⊆ Out C3xD1296(C3xD12):38C2^2288,674
(C3xD12):39C22 = C3xC8:D6φ: C22/C2C2 ⊆ Out C3xD12484(C3xD12):39C2^2288,679
(C3xD12):40C22 = C6xC4oD12φ: trivial image48(C3xD12):40C2^2288,991

Non-split extensions G=N.Q with N=C3xD12 and Q=C22
extensionφ:Q→Out NdρLabelID
(C3xD12).1C22 = S3xC24:C2φ: C22/C1C22 ⊆ Out C3xD12484(C3xD12).1C2^2288,440
(C3xD12).2C22 = C24:1D6φ: C22/C1C22 ⊆ Out C3xD12484+(C3xD12).2C2^2288,442
(C3xD12).3C22 = C24:9D6φ: C22/C1C22 ⊆ Out C3xD12484(C3xD12).3C2^2288,444
(C3xD12).4C22 = C24.3D6φ: C22/C1C22 ⊆ Out C3xD12964-(C3xD12).4C2^2288,448
(C3xD12).5C22 = D6.1D12φ: C22/C1C22 ⊆ Out C3xD12484(C3xD12).5C2^2288,454
(C3xD12).6C22 = D24:7S3φ: C22/C1C22 ⊆ Out C3xD12964-(C3xD12).6C2^2288,455
(C3xD12).7C22 = D12.2D6φ: C22/C1C22 ⊆ Out C3xD12484(C3xD12).7C2^2288,457
(C3xD12).8C22 = D24:5S3φ: C22/C1C22 ⊆ Out C3xD12484(C3xD12).8C2^2288,458
(C3xD12).9C22 = D12.4D6φ: C22/C1C22 ⊆ Out C3xD12484(C3xD12).9C2^2288,459
(C3xD12).10C22 = Dic6:3D6φ: C22/C1C22 ⊆ Out C3xD12488+(C3xD12).10C2^2288,573
(C3xD12).11C22 = D12.D6φ: C22/C1C22 ⊆ Out C3xD12488-(C3xD12).11C2^2288,575
(C3xD12).12C22 = S3xD4.S3φ: C22/C1C22 ⊆ Out C3xD12488-(C3xD12).12C2^2288,576
(C3xD12).13C22 = D12.22D6φ: C22/C1C22 ⊆ Out C3xD12488-(C3xD12).13C2^2288,581
(C3xD12).14C22 = D12.7D6φ: C22/C1C22 ⊆ Out C3xD12488+(C3xD12).14C2^2288,582
(C3xD12).15C22 = D12.8D6φ: C22/C1C22 ⊆ Out C3xD12488-(C3xD12).15C2^2288,584
(C3xD12).16C22 = S3xQ8:2S3φ: C22/C1C22 ⊆ Out C3xD12488+(C3xD12).16C2^2288,586
(C3xD12).17C22 = D12.9D6φ: C22/C1C22 ⊆ Out C3xD12488-(C3xD12).17C2^2288,588
(C3xD12).18C22 = D12.10D6φ: C22/C1C22 ⊆ Out C3xD12488+(C3xD12).18C2^2288,589
(C3xD12).19C22 = D12.11D6φ: C22/C1C22 ⊆ Out C3xD12968-(C3xD12).19C2^2288,591
(C3xD12).20C22 = D12.24D6φ: C22/C1C22 ⊆ Out C3xD12968-(C3xD12).20C2^2288,594
(C3xD12).21C22 = D12.12D6φ: C22/C1C22 ⊆ Out C3xD12968-(C3xD12).21C2^2288,595
(C3xD12).22C22 = D12.13D6φ: C22/C1C22 ⊆ Out C3xD12488+(C3xD12).22C2^2288,597
(C3xD12).23C22 = D12.14D6φ: C22/C1C22 ⊆ Out C3xD12488+(C3xD12).23C2^2288,598
(C3xD12).24C22 = D12.15D6φ: C22/C1C22 ⊆ Out C3xD12488-(C3xD12).24C2^2288,599
(C3xD12).25C22 = C3xD8:S3φ: C22/C1C22 ⊆ Out C3xD12484(C3xD12).25C2^2288,682
(C3xD12).26C22 = C3xS3xSD16φ: C22/C1C22 ⊆ Out C3xD12484(C3xD12).26C2^2288,684
(C3xD12).27C22 = C3xQ8.7D6φ: C22/C1C22 ⊆ Out C3xD12484(C3xD12).27C2^2288,687
(C3xD12).28C22 = C3xQ16:S3φ: C22/C1C22 ⊆ Out C3xD12964(C3xD12).28C2^2288,689
(C3xD12).29C22 = C3xD24:C2φ: C22/C1C22 ⊆ Out C3xD12964(C3xD12).29C2^2288,690
(C3xD12).30C22 = D12.25D6φ: C22/C1C22 ⊆ Out C3xD12488-(C3xD12).30C2^2288,963
(C3xD12).31C22 = D12.30D6φ: C22/C2C2 ⊆ Out C3xD12484(C3xD12).31C2^2288,470
(C3xD12).32C22 = C2xDic6:S3φ: C22/C2C2 ⊆ Out C3xD1296(C3xD12).32C2^2288,474
(C3xD12).33C22 = D12.32D6φ: C22/C2C2 ⊆ Out C3xD12484(C3xD12).33C2^2288,475
(C3xD12).34C22 = C2xD12.S3φ: C22/C2C2 ⊆ Out C3xD1296(C3xD12).34C2^2288,476
(C3xD12).35C22 = D12.27D6φ: C22/C2C2 ⊆ Out C3xD12484(C3xD12).35C2^2288,477
(C3xD12).36C22 = D12.28D6φ: C22/C2C2 ⊆ Out C3xD12484(C3xD12).36C2^2288,478
(C3xD12).37C22 = D12.29D6φ: C22/C2C2 ⊆ Out C3xD12484-(C3xD12).37C2^2288,479
(C3xD12).38C22 = C6xQ8:2S3φ: C22/C2C2 ⊆ Out C3xD1296(C3xD12).38C2^2288,712
(C3xD12).39C22 = C3xQ8.11D6φ: C22/C2C2 ⊆ Out C3xD12484(C3xD12).39C2^2288,713
(C3xD12).40C22 = C3xD4:D6φ: C22/C2C2 ⊆ Out C3xD12484(C3xD12).40C2^2288,720
(C3xD12).41C22 = C3xQ8.13D6φ: C22/C2C2 ⊆ Out C3xD12484(C3xD12).41C2^2288,721
(C3xD12).42C22 = D12.33D6φ: C22/C2C2 ⊆ Out C3xD12484(C3xD12).42C2^2288,945
(C3xD12).43C22 = D12.34D6φ: C22/C2C2 ⊆ Out C3xD12484-(C3xD12).43C2^2288,946
(C3xD12).44C22 = C3xQ8.15D6φ: C22/C2C2 ⊆ Out C3xD12484(C3xD12).44C2^2288,997
(C3xD12).45C22 = C6xC24:C2φ: C22/C2C2 ⊆ Out C3xD1296(C3xD12).45C2^2288,673
(C3xD12).46C22 = C3xC4oD24φ: C22/C2C2 ⊆ Out C3xD12482(C3xD12).46C2^2288,675
(C3xD12).47C22 = C3xC8.D6φ: C22/C2C2 ⊆ Out C3xD12484(C3xD12).47C2^2288,680
(C3xD12).48C22 = C3xQ8oD12φ: trivial image484(C3xD12).48C2^2288,1000

׿
x
:
Z
F
o
wr
Q
<